JOM 23539

Alkylation of dimethylaminobis(trifluoromethyl)borane by 1-alkenes

H. Bürger, T. Hagen and G. Pawelke

Anorganische Chemie, Fachbereich 9, Universität-Gesamthochschule, D-42097 Wuppertal (Germany) (Received November 27, 1992)

Abstract

Dimethylaminobis(trifluoromethyl)borane, $(CF_3)_2 BNMe_2$ (A), undergoes B-alkylation on treatment with 1-alkenes of the general formula $(R^1CH_2)(R^2)C=CH_2$ to yield triorganoboron adducts $Me_2(H)N-B(CF_3)_2CH_2(R^2)C=CHR^1$ ($R^1 = H, R^2 = Me$ (I); $R^1 = H, R^2 = CH_2(CF_3)_2B-NHMe_2$ (II); $R^1 = Me, R^2 = Et$ (III); $R^1 - H, R^2 - CH_2(^{T}Bu)$ (IV); $R^1 - H, R^2 - Ph$ (V); $R^1 = H, R^2 = CH=CMe_2$ (VI); $R^1 = Ph, R^2 = H$ (VII); $R^1 = n^{Pr}, R^2 = H$ (VIII); $R^1 = i^{Pr}, R^2 = H$ (IX)). In contrast, monosubstituted ethene derivatives (R^2)CH=CH₂ ($R = {}^{s}Bu$, Ph, Mes, Me₃Si, Et₃Si) react with A to form the corresponding methylmethyleneimine boron adducts $H_2C=N(Me)-B(CF_3)_2CH_2CH_2R^2$ (X, XII-XV).

With (^tBu)(Me)C=CH₂, A undergoes both types of reaction, yielding a 1/4 mixture of Me₂(H)N-B(CF₃)₂CH₂(^tBu)C=CH₂ (XIa) and H₂C=N(Me)-B(CF₃)₂CH₂CH(Me)(^tBu) (XIb). Whereas I-IX and XIa are formed by an ene-type reaction, X and XIb-XV result from a shift of a hydride from the dimethylamino group to the alkylating substituent. The novel boranes have been characterized by elemental analysis and multinuclear NMR, IR and mass spectroscopy.

1. Introduction

Bis(trifluoromethyl)dimethylaminoborane, $(CF_3)_2$ $BNMe_2$ (A), contains a BN multiple bond that exhibits a reactivity which differs considerably from that of other aminoboranes. Thus A has been shown to undergo readily [2+4] cycloaddition reactions with suitable dienes [1] and ene reactions with nitriles, RCH₂CN, and carbonyl compounds of the general formula $R^2C(O)CH_2R^1$ [2]. In these reactions, which are depicted in Scheme 1, a boron-carbon bond is formed, and both the boron and the nitrogen atom undergo an increase in coordination number from three to four. An alternative reaction pathway involving a hydride shift from the dimethylamino group to the alkylating substituent was found when A was treated with substrates lacking a suitable hydrogen atom for the quaternation of the nitrogen atom (see Scheme 1) [3]. This ambivalent behaviour of the highly reactive BN multiple bond in A prompted us to investigate the reaction of A with 1-alkenes of the formula $(R^1CH_2)(R^2)C=CH_2$ (R^1 , $R^2 = H$, alkyl, aryl) and $(R^2)HC=CH_2$ (R^2 = alkyl) in a systematic fashion, and the results of this investigation are presented below.

2. Results

Isobutylene is known to undergo ene reactions with silaneimines [4]. We have found that it reacts similarly with A even at -10° C. Under these conditions a 5:83 mixture of the 1:1 adduct I and the 1:2 product II is obtained according to eqn. (1). The high yield of II indicates that I reacts faster with A than isobutylene. A+H₂C=CMe₂ \longrightarrow

The formation of both species is shown in in the upper part of Scheme 2.

2-Ethyl-1-butene, Et₂C=CH₂, reacts analogously at 0°C to give the *E*-isomer III, and 2,4,4-trimethyl-1pentene, (¹BuCH₂)(Me)C=CH₂, yields IV, the proton being abstracted almost exclusively from the 2-methyl group. Compound V is formed analogously from A and methylstyrene, (Ph)(Me)C=CH₂. Alkenes with a β carbon atom bearing a hydrogen atom and an alkyl group (i.e. H₂C=CHCH₂R¹) react less readily, and reaction times of to 4 days at temperatures of 50°C are

Correspondence to: Professor H. Bürger.

Scheme 1.

required to produce substantial yields of VII-IX. Bulky substituents attached to the β -carbon atom of 1-alkenes, as *e.g.* in H₂C=CHC*H* MeEt, prevent formation of the transition state required for a shift of the *H* proton to nitrogen. In this case a different type of reaction (which was observed previously when A was treated with alkynes, nitriles or carbonyl compounds [3]) is favoured as shown in Scheme 2 (lower part). This alternative pathway involves transfer of a hydride from an N-methyl group to an olefinic carbon atom, as is shown by the formation of **X**. The hydride shift pathway takes place whenever there are no available hydrogens α to the double bond, *e.g.* in H₂C=CHR², R² = Ph (**XII**), Me₃Si (**XIV**), and Et₃Si (**XV**). The reaction of **A** with CH₂=CH(¹Bu) has already been reported [3].

The reaction of $H_2C=C(CH_3)(^{1}Bu)$ with **A** is an interesting borderline case since significant amounts of both the ene and hydride shift products are formed, in a total yield of 75% (eqn. (2)).

Scheme 2.

TABLE 1. NMR spectral data for compounds 1-XIV (δ in ppm)^a

	I	11	111	IV	V	VI	VII	VIII	IX	X	XIa	XIb	XII	XIII	XIV	XV
$\overline{{}^{l}H}$										<u> </u>			·· <u> </u>			
$\delta(\text{NC}H_3)$	2.80	2.80	2.78	2.81	2.71	2.79	2.75	2.76	2.76	3.66	2.75	3.78	3.63	3.74	3.65	3.67
$\delta(\mathrm{BC}H_2)$	1.57	1.62	1.51	1.62	2.08	1.63	1.78	1.49	1.48	0.61	1.59	0.98	1.13	0.88	0.66	0.67
										0.71		1.04	1.17	0.91	0.70	0.70
$\delta(=CCH_3)$	1.75		1.62			1.80										
S(CH)	4.61	4.50	5.01	4.60	5.07	1.83	6.40	5 20	5 20		4 72					
$o(=CH_n)$	4.01	4.59	5.01	4.60	5.07	4.78	6.40 6.45	5.50	5.38		4.72					
	4.04			4.79		5.68	0.45	5.52	5.47		4.90					
$\delta(CCH_2)$			2.07	1.98		2.00		1.36		1.0)			2.60	2.58	0.22	0.24
- (- 2 - 2)								1.99		1.5			2.73	2.64	0.27	0.29
$\delta(CCH_2)$			1.04	0.92				0.89	0.98	0.86	0.86	0.73		2.29		0.94
~										0.87		0.85		2.33		
$\delta(CHC_2)$									2.28	2.04		1.40				
$\delta(\operatorname{SiC} H_n)$							~ ~ ~						~ ~ ~		-0.01	0.53
$\delta(C_6H_5)$					7.18	<u>'</u> }	7.23	}					7.22	6.88		
					7.43	<i>,</i> ,	7.44)					/.38	, 		
$\delta(N=CH_2)$										7.66		7.71	7.59	7.71	7.62	7.65
S(NU)	5 65	5 (0)	. 1 25		5 45	1 25	. 40	. 2.05	2.05	7.74	. 40	/.84	/.03	/.81	7.74	1.15
$O(\mathbf{N}H)$	~ 5.65	~ 5.60	~ 4.25	~ 5.57	~ 5.00) ~ 4.35	~ 4.0	~ 3.95	~ 3.95		~ 4.0					
¹⁹ F																
$\delta(CF_3)$	-67.0	-61.9	- 62.1	-61.8	-61.8	- 62.0	-62.5	-62.5	- 62.4	-64.7	- 63.8	-61.6	- 64.5	- 64.5	-64.3	- 64.5
												- 65.7				
¹¹ B																
δ(B)	-8.0	- 8.6	-8.5	- 9.0	-8.1	-8.0	-8.5	- 8.6	-8.8	-6.1	-	-5.6	-6.0	- 5.8	- 5.1	-5.3
Be																
S(NCH)	38.0	40.9	40.1	41.4	40.0	40.2	30.7	20.7	30.9	18 7	40.0	18.6	49.1	18.1	48.1	18 2
$\delta(BCH_3)$	24 Q	40.8 74 Q	22.0	26.0	22.0	23.6	20.4	19.7	19.8	13.0	19.0	46.0	18.0	17.0	40.1	40.2
$\delta(CCH_2)$	25.0	2>	13.1	31.0	22.0	19.4	20.1	13.5	22.7	11.3	26.9	16.3	10.0	20.7	0.0	74
			12.6			26.3		22.9		18.7		27.0		23.5		
$\delta(CCH_2)$			24.1	32.8				34.8		28.9		29.3	30.2	40.2		
-										30.3						
$\delta(\text{Si}CH_n)$															9.0	2.8
- ()															-2.3	3.0
$\delta(CC_3)$				52.1					31.1	37.0	29.4	34.0				
$\delta(N=CH_2)$	146.2	150.0	1 4 4 1	140.1	140 6	125.0				167.0	150.1	166.4	167.4	167.0	166.9	166.7
$\delta(C = CH_n)$	146.2	150.9	144.1	149.1	149.6	135.8					158.1					
8(C-CH)	110.0	108.5	116.4	113.2	113.0	144.0	125.6	1277	124.6		105.0					
$\partial(\mathbf{C} - \mathbf{C} \mathbf{\Pi}_n)$	110.9	100.5	110.4	115.2	115.9	127.8	129.0	131.6	139.0		105.9					
δ(C, H,)					127.7	127,0	125.8	151.0	157.0				125.6	128.6		
- (~0**3)					128.0		126.9						127.9	128.9		
					128.9		128.6						128.4	134.6		
					145.0		137.6						145.2	138.8		

^a **I**, **II**, **IV** and **V** in $(CD_3)_2CO$; **III** and **VI-XV** in CDCl₃; ¹H: 250.13 MHz, int. std. $CHCl_3 = 7.27 \text{ ppm}/CD_3COCD_2H = 2.05 \text{ ppm}$. ¹³C: 62.9 MHz, int. std. $CDCl_3 = 77.0 \text{ ppm}/(CD_3)_2CO = 29.8 \text{ ppm}$. ¹⁹F: 84.67 MHz, int. std. $CFCl_3$. ¹¹B: 25.52 MHz, ext. std. $BF_3 \cdot OEt_2$.

(2)

Although the requirements for an ene-type reaction are fulfilled, only *ca*. 20% of the corresponding reaction product **XIa** is produced and **XIb** is formed in 80% yields by the hydride shift pathway. We assume that steric crowding accounts for the preferred formation of **XIb**.

Ene reactions are known to follow a concerted reaction mechanism as depicted in Scheme 2. In the case of A, where an extremely polar B=N double bond reacts with an alkene, it is possible that the reaction is initiated by Lewis-acid/base adduct formation of the boron atom with the terminal $=CH_2$ group. The observation that CH₂=CH(CHClMe) does not react with A supports this suggestion, and indicates that only electronrich 1-alkenes undergo reactions according to Scheme 2. Starting from such primary adducts both ene and hydride shift reactions proceed via different six-membered cyclic transition states. Though we cannot present any direct experimental evidence, e.g. low temperature NMR spectra, for the existence of such adducts, the identities of the by-products support this suggestion. When, for example, A and CH₂=CH¹Bu were allowed to react on a 0.1 molar scale and the products subsequently hydrolyzed according to eqn. (3), we obtained not only ${}^{t}BuCH_{2}CH_{2}(CF_{3})_{2}B_{-}$ NH₂Me but also up to 4% of 'BuCH₂CH₂(CF₃)₂B-NHMe₂. The formation of this by-product indicates that the hydride transfer is not absolutely restricted to a cyclic transition state as illustrated in Scheme 2, but may perhaps also proceed from a Lewis-acid/base adduct.

3. Properties and spectra

All the novel boranes are colourless solids or oily liquids. Compounds I–IX, which were obtained by an

ene-type reaction, are stable to air and moisture, while species X and XIb-XV containing a methylmethyleneimino group readily undergo hydrolysis to give the corresponding methylamine adducts (eqn. (3)).

$$(CF_3)_2(R)B - N(CH_3) = CH_2 \xrightarrow{H_2O} (CF_3)_2(R)B - NH_2CH_3 + OCH_2 \quad (3)$$

Traces of such hydrolysis products were detected in the NMR spectra whenever moisture was not rigorously excluded. Compounds X and Xlb–XV are thermally less stable than I–IX and may *decompose vigorously* when heated to 90°C and above. The as yet unknown alkyl-bis(trifluoromethyl)boranes, $(CF_3)_2BR$, are unstable with respect to exothermal decomposition into the corresponding difluoroboranes, F_2BR , and difluorocarbene. This degradation pathway obviously becomes more important in complexes of borane with N(CH₃)=CH₂, which are more susceptible to thermal decomposition than are those of the basic secondary amine NH(CH₃)₂. The ¹H, ¹⁹F, ¹¹B and ¹³C NMR spectra of I–XV

The ¹H, ¹⁹F, ¹¹B and ¹³C NMR spectra of **I**–**XV** were recorded. The NMR parameters, which are set out in Table 1, reveal some significant differences between the products formed by an ene-type reaction and those resulting from hydride shift (*e.g.* δ (¹¹B) 8–9 ppm *vs.* 5–6 ppm, respectively). Characteristic features of **X** and **XIb–XV** are the AB spin system of the N=CH₂ group in the ¹H NMR spectra, with δ 7.6–7.8 ppm, ²J_{HH} 10–11 Hz, and a resonance at 167 ppm in the ¹³C spectrum that is assigned to the N=CH₂ carbon atom.

The EI mass spectral data are reported in Table 2. They confirm the proposed formulations, and allow a ready differentiation between ene-type and hydride shift reaction products. Thus, **I**-I**X**, have in common the base peak m/e 94 [F₂BNH(CH₃)-₂]⁺ while **X** and

TABLE 2. EI mass spectral data (m/e relative intensity (%) [fragment]⁺) for compounds II-XV

II	94 (100) $[F_2BNH(CH_3)_2]^+ / 74$ (9) $[FBN(CH_3)_2]^- / 44$ (8) $[C_2H_6N]^+ / 249$ (4) $[M]^+$ (I) / 442 (1) $[M]^+$
Ш	94 (100) $[F_2BNH(CH_3)_2]^+ / 55$ (11) $[C_4H_7]^+ / 277$ (8) $[M]^+ / 84$ (7) $[C_6H_{12}]^+ / 44$ (5) $[C_2H_6N]^+ / 74$ (3) $[FBN(CH_3)_2]^+ / 32$
	$158(1)[M-C_2F_5]^{-1}$
IV	94 (100) $[F_2BNH(CH_3)_2]^+/249$ (31) $[M - (CH_3)_2C=CH_2]^+/57$ (25) $[C(CH_3)_3]^-/290$ (5) $[M - CH_3]^+/44$ (3) $[C_2H_bN]^+$
v	94 (100) $[F_2BNH(CH_3)_2]^+/311 (17) [M]^+/44 (11) [C_2H_6N]^+/118 (10) [C_9H_{10}]/115 (6) [C_9H_7]^+/117 (5) [C_9H_8]^-$
VI	94 (100) $[F_2BNH(CH_3)_2]^4 / 55 (37) [C_4H_7]^4 / 96 (22) [C_7H_{12}]^2 / 69 (18) [C_5H_9]^4 / 170 (12) [M - C_2F_3]^2 / 274 (5) [M - CH_3]^2 / (5) [M - CH_3]^2 /$
	289 (2) [M] ⁺
VII	94 (100) $[F_2BNH(CH_3)_2]^+/117 (70) [C_9H_9]^+/311 (19) [M]^+/115 (14) [C_9H_7]^+/118 (10) [C_9H_{10}]^+/44 (10) [C_2H_6N]^+$
VIII	94 (100) $[F_2BNH(CH_3)_2]^+/44$ (8) $[C_2H_6N]^-/277$ (8) $[M]^+/158$ (2) $[M-C_2F_5]^-/248$ (1) $[M-C_2H_5)^+/235$ (1) $[M-C_3H_6]^+/235$ (1) $[M-C_3H_6]^+/2$
IX	94 (100) $[F_2BNH(CH_3)_2]^+/69 (27) [C_5H_9]^-/44 (11) [C_2H_6N]^+/277 (11) [M]^+/262 (10) [M - CH_3]^+/158 (2) [M - C_3F_5]^+$
Х	92 (100) $[F_2B(N=CH_2)CH_3]^+/158$ (9) $[M - C_2F_3]^+/277$ (1) $[M]^+$
XIb	92 (100) $[F_2B(N=CH_2)CH_3]^+/57$ (60) $[C(CH_3)_3]^-/234$ (2) $[M-C(CH_3)_3]^+/276$ (1) $[M-CH_3]^+$
XII	92 (100) $[F_2B(N=CH_2)CH_3]^+/91$ (65) $[C_7H_7]^+/77$ (25) $[C_6H_5]^+/178$ (24) $[M - C_2F_5]^-/228$ (3) $[M - CF_3]^+/297$ (1) $[M]^+$
XIII	$92 (100) [F_2B(N=CH_2)CH_3]^+ / 133 (52) [C_{10}H_{13}]^- / 220 (20) [M - C_2F_5]^+ / 119 (14) [C_9H_{11}]^+ / 270 (6) [M - CF_3]^+ / 339 (1) [M]^+$
XIV	92 (100) $[F_2B(N=CH_2)CH_3]^+/73$ (33) $[Si(CH_3)_3]^+/123$ (24) $[C_3H_5BF_5N]^+/173$ (12) $[C_4H_5BF_5N]^-/293$ (1) $[M]^+$
XV	92 (100) $[F_2B(N=CH_2)CH_3]^+/115$ (8) $[Si(C_2H_3)_3]^+/123$ (8) $[C_3H_5BF_3N]^-/173$ (2) $[C_4H_5BF_5N]^+$

TABLE 3. Characteristic IR absorptions for compounds II–XV $(\mbox{cm}^{-1})^{\mbox{ a}}$

	ν(N-H)	ν(C=N)	ν(C=C)	ν(C-F)
п	3185 m		1618 m	1085 vs
III	3280 w		1644 w	1085 vs
IV	3176 w		1620 w	1095 vs
V	3220 m		1630/1610/1573w	1085 vs
VII	3220 m		1640/1600 w	1094 vs
VIII	3220 m		1595 w	1095 vs
IX	3320 w		1593 w	1085 vs
X		1670 vw		1095 vs
XIa	3318 m		1595 w	1095 vs
XIb		1670 w		1095 vs
XII		1660 w	1600 w	1097 vs
XIV		1670 w		1105/1085 vs
XV		1669 w		1106/1083 vs

^a KBr discs, $\pm 2 \text{ cm}^{-1}$

XIb-XV give a base peak at m/e 92, $[F_2B(CH_3)-N=CH_2]^+$. Peaks of the molecular ion $[M]^+$ are of low intensity except for V and VII, and in some cases were not detected at all.

Some diagnostic infrared wavenumbers assigned to ν (N-H), ν (C=N), ν (C=C) and ν (C-F) are quoted in Table 3.

4. Experimental details

The compounds discussed here have the following systematic names: bis(trifluoromethyl)(2-methyl-2-propenyl)borane-dimethylamine (I); 1,1-di[bis(trifluoromethyl)boryl-dimethylamine|methyl-ethylene (II); bis-(trifluoromethyl)(trans-2-ethyl-2-butenyl)borane-dimethylamine (III); bis(trifluoromethyl)(2-neopentyl-2propenyl)borane-dimethylamine (IV); bis(trifluoromethyl)(2-phenyl-2-propenyl)borane-dimethylamine (V); bis(trifluoromethyl)[2-(4-methyl-1,3-pentadienyl)methyl]-borane-dimethyl-amine (VI); bis(trifluoromethyl)(trans-3-phenyl-2-propenyl)borane-dimethylamine (VII); bis(trifluoromethyl)(trans-2-hexenyl)borane-dimethylamine (VIII); bis(trifluoromethyl)(4-methyltrans-2-pentenyl)borane-dimethylamine (IX); bis(trifluoromethyl)(3-methylpentyl)borane-methylmethyleneimine (X); bis(trifluoromethyl)(2-t-butyl-2-propenyl)borane-dimethylamine (XIa); bis(trifluoromethyl)(2,3,3-trimethylbutyl)borane-methylmethyleneimine (XIb); bis(trifluoromethyl)(2-phenylethyl)boranemethylmethyleneimine (XII); bis(trifluoromethyl)[2-(2,4,6trimethylphenyl)-ethyl]borane-methylmethyleneimine (XIII); bis(trifluoromethyl)(2-trimethylsilylethyl)borane-methylmethyleneimine (XIV) and bis(trifluoromethyl)(2-triethylsilylethyl)borane-methylmethyleneimine (XV).

4.1. General procedure for '-VI, XIa / b, XIV, and XV

To a stirred solution of 12 mmol of alkene in 20 ml of dry pentane, 2.0 g (10.4 mmol) of $(CF_3)_2BNMe_2$ was added dropwise at 4°C. The mixture was allowed to warm to room temperature and stirring continued for 3 h. The solvent and other volatile by-products were removed *in vacuo* at ambient temperature and the residue was purified by sublimation or distillation *in vacuo* as appropriate. The more volatile compound I, m.p. 71°C, was separated from II, m.p. 114°C, by fractional sublimation.

4.2. General procedure for VII-X, XII, and XIII

A mixture of 2.0 g (10.4 mmol) of $(CF_3)_2 BNMe_2$ and 30 of mmol alkene were sealed in a glass ampoule and heated to 50°C for 4–7 d. Unchanged starting materials and other volatile by-products were distilled off *in vacuo* at ambient temperature and VII–X, XII and XIII were obtained from the dark tarry residue by sublimation *in vacuo*.

For yields see text; for elemental analyses see Table 4.

TABLE 4. Elemental analyses

Compound	Formula	Analyses (Found (calc.) %)					
		C	Н	F			
I	C ₈ H ₁₄ BF ₆ N	38.21	5.60	46.20			
	0 14 0	(38.60)	(5.67)	(45.80)			
II	$C_{12}H_{20}B_2F_{12}N_2$	32.89	4.55	51.60			
		(32.62)	(4.56)	(51.59)			
III	$C_{10}H_{18}BF_6N$	43.18	6.49	40.63			
	10 18 0	(43.35)	(6.55)	(41.15)			
IV	$C_{12}H_{22}BF_6N$	46.67	7.06	37.01			
	12 22 0	(47.24)	(7.27)	(37.36)			
v	$C_{13}H_{16}BF_6N$	49.62	5.34	35.98			
	15 10 0	(50.03)	(5.49)	(36.53)			
VI	$C_{11}H_{18}BF_6N$	45.20	5.99	38.88			
		(45.71)	(6.28)	(39.43)			
VII	$C_{13}H_{16}BF_6N$	49.44	5.27	36.22			
	15 16 6	(50.03)	(5.49)	(36.53)			
VIII	$C_{10}H_{18}BF_6N$	42.98	6.33	40.39			
	10 10 0	(43.35)	(6.55)	(41.15)			
IX	$C_{10}H_{18}BF_6N$	43.57	6.61	41.40			
	10 10 0	(43.35)	(6.55)	(41.15)			
x	$C_{10}H_{18}BF_6N$	42.99	6.42	40.65			
	10 10 0	(43.35)	(6.55)	(41.15)			
XIa/b	$C_{11}H_{20}BF_{6}N$	45.10	6.87	38.61			
•	11 20 0	(45.39)	(6.93)	(39.16)			
XII	$C_{12}H_{14}BF_6N$	47.67	4.94	37.38			
	12 11 0	(48.36)	(5.07)	(38.25)			
XIII	$C_{15}H_{20}BF_{6}N$	53.29	5.97	33.41			
		(53.13)	(5.94)	(33.62)			
XIV	C ₉ H ₁₈ BF ₆ NSi	36.80	6.13	38.69			
	, 10 0	(36.89)	(6.19)	(38.90)			
XV	C ₁₂ H ₂₄ BF ₆ NSi	42.79	7.12	33.76			
	12 2. 0	(43.01)	(7.22)	(34.02)			
XV	$C_{12}H_{24}BF_6NSi$	42.79 (43.01)	7.12 (7.22)	33.7 (34.0			

Acknowledgments

We thank Dr. D. Henneberg, Mülheim/Ruhr, for recording the mass spectra. Financial support from the Fonds der Chemie and the Ministerium für Wissenschaft und Forschung NW is gratefully acknowledged. We are particularly grateful to a referee for valuable comments.

References

- 1 A. Ansorge, D.J. Brauer, H. Bürger, F. Dörrenbach, T. Hagen, G. Pawelke and W. Weuter, J. Organomet. Chem., 396 (1990) 253.
- 2 A. Ansorge, D.J. Brauer, H. Bürger, T. Hagen and G. Pawelke, J. Organomet. Chem., 444 (1993) 5.
- 3 H. Bürger, T. Hagen and G. Pawelke, J. Fluorine Chem., 55 (1992) 323.
- 4 N. Wiberg, K. Schurz and G. Fischer, *Angew. Chem.*, 97 (1985) 1058.